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Controlling chaos with weak periodic signals optimized by a genetic algorithm
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In the present study we develop a relatively novel and effective chaos control approach with a multimode
periodic disturbance applied as a control signal and perform an in-depth analysis on this nonfeedback chaos
control strategy. Different from previous chaos control schemes, the present method is of two characteristic
features(1) the parameters of the controlling signal are optimized by a genetic algo@#nwith the largest
Lyapunov exponent used as an index of the stability, @ydhe optimization is justified by a fitness function
defined with the target Lyapunov exponent and the controlling power. This novel method is then tested on the
noted Rossler and Lorenz systems with and without the presence of noise. The results disclosed that, compared
to the existing chaos control methods, the present GA-based control needs only significantly reduced signal
power and a shorter transient stage to achieve the preset control goal. The switching control ability and the
robustness of the proposed method for cases with sudden change in a system parameter and/or with the
presence of noise environment are also demonstrated.
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[. INTRODUCTION The nonfeedback methods include introduction of weak
eriodic parameter perturbatiofy—13, constant force or
A. Chaos control methods Eias [14], F\)/veak periogic pulses(?[opeﬁ-loop entrainment con-
Chaotic systems are characterized by their extreme sensto| [15], and weak noise signa[d6]. Comprehensive dis-

tivity to the initial conditions; although the chaotic motion cussion of a variety of nonfeedback chaos control methods
may be useful in some cases such as mixing of multicompocan be found in recent literature, e.g., R¢is7,18. For sup-
nent fluid systems and some secure communications. On thgession of chaos, to use a weak periodic perturbation signal
other hand, its irregularity and unpredicability are undesiris simplest and easiest to implement among the existing non-
able in most practical applications. For these situations, ongeedback chaos control methods. In a previous waik it

may wish to prevent or suppress the occurrence of chaotifas been shown that one of the infinite UPOs embedded in
behaviors. In the past years, various chaos control methodfe chaotic attractor can be approached and stabilized by
have been developed. Chaos control approaches can B@plying a small periodic perturbation to a system parameter
broadly classified into two categories: feedback and nonfeecsr as an external force. Suppressing chaos in a low dimen-
back methods. The feedback control chaos methods Stabi|i2§ona| system by using a Signa| of resonant frequency has
one of the unstable periodic orbift§POg embedded in its peen confirmed analyticallg] and experimentally9], and
chaotic attractor by applying small temporal perturbations tanore applications can be found elsewhere, ¢i-17.

an accessible system parameter6]. For some high-speed Recently, Mettin and Kurg13] proposed an optimization
systems such as chaotic circuits and fast electro-optical sysf multiple-mode signals and performed switching control
tems, there is difficulty in attaining real-time data of the sys-between different target states without the presence of noise.
tem parameters and variables. In contrast to the feedbadk their method, a cost functional was defined and minimized
control techniques, the nonfeedback methods suppress chiay an optimization algorithm combining the simulated an-
otic motion by changing the system dynamics from a chaoticealing technique and the downhill simplex method. The
attractor to a periodic motiofy—18. Relatively nonfeedback functional contains the control signal power as well as a
methods have the advantages in speed, flexibility, and nmeasure of the control performance, i.e., mean recurrence
online monitoring and processing required. This class of condistances. However, the mean recurrence distances may not
trol approaches is suitable for applications where no realbe defined perfectly, and the performance of optimization has
time or only highly limited measurements of the systems ardéo be improved by a properly selected technique. Further-
available. more, for systems with a dynamic change in a governing
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ment. The fitness function guides the searching process with-
out any requirement of derivatives or other auxiliary knowl-
@ edge. A solution with a higher fitness value is relatively
better, although the maximum possible fithess might not be
known. The proper choice of the fitness function determines

the speed at which the algorithm converges. Then, a new
» generation can be created by usingproductionoperator to
m 4 select the most fitting individual. To obtain other points in

the searching space, after the reproduction, the probabilistic

crossoverand mutationoperators are applied according to a

preset probability for each. Variations are introduced into the
® new population by means of idealized genetic recombination
or crossover operator. The mutation is a random walk pro-
cess through the string space.

a | b a| b e aya|byafav [ by | @ | @

P*m“:l o | B I a | b | """ I“lN-llb;’-'l ”}VIb}« I o | ¢ I . The major characteristics of a GA-based optimization dis-
Arithmetic . .
¢ ------ ¢ ¢ ¢ ¢ ¢ ¢ Cromover tinct from that of the traditional random search methods are:
Pmmzl 2 |b|2 I 2 Ibz’ | ______ |a§,-1|b§,_l| aﬁlb; l wzl ¢2| (v a G_A has a searching dlrectlon_ based on the prob_ablhstlc
operationsyb) a GA has an evolution mechanism which al-
v - T lows the better strings to generate more offspring; @nthe
oftspring 1:  af [ & [} | 8] - et e 4] 8] @] o] average fitness is likely to be improved after some genera-
tions.
I i A S A A G S
© C. Objective of the present work
Happen to mutate In the present study, we attempt to develop an effective
and robust approach to suppress chaotic behavior and lead
Parent: @ [ & | e fl] ... [av|bn]o]o] the controlled system to a periodic state even for the systems
€— Nonwitfonm mitition with a dynamic change in a governing parameter and/or a

Oﬁ'spring'lal | 5 | __________ la"le| “’]"’| noisy environment. A' gene.tic algorit.hm is adqpted in the
’ present study for their merits of rapid and efficient global
@ searching ability and effectiveness in optimization problems
whose gradient information is not available. The largest
FIG. 1. lllustration of the GA operations used in the presentLyapunov exponent is a quantitative measure of chaos and
work. (a) Representation of the chromosoni®) roulette wheel the signal power needed is an index of the performance.
selection;(c) arithmetic crossover operation, aiid) nonuniform  Therefore we adopt these two quantities in definition of the
mutation operation. fithess function to measure the achievement of the preset
control goal and the stability of the stable orbits. The control
parameter and/or a noisy environment, a more robust contr@ignal is described by a finite set of real parametess,
method is needed. Fourier modes and thus is restricted to a certain control
function space. The proposed approach is tested on the noted
Rossler[21] and Lorenz[22] systems and the results are
B. Genetic algorithms compared with previous chaos control methods to demon-

Calculus-based search methods usually assume a smodiate Its superiority.
search space, and most of them use a gradient-following
technique. Different from the conventional optimization
methods, genetic algorithmi&As) borrow the concepts and
operations from Darwinian evolutiofl9,2Q. Genetic algo-
rithms are inherently a class of global search techniques uti- At first, the evolution dynamics of a system is examined.
lizing the principle of survival of the fittest and have greatin power spectra of an uncontrolled system, there appear
potential in practical applications. The simulation starts withvarious modes or UPOs embedded in its chaotic attractor,
one set of randomly generated individuals. Each individuafrom which a certain peak is chosen as the target frequency
in the population representing a solution to the problem isand the searching range of the frequency of the perturbation
called achromosomeA chromosome is a string of symbols signal is set around the target mode.
and is usually in the form of a binary bit or floating-point
string. The chromosomes evolve through successive itera-
tions and the evolution leads the search toward the area of
the best solution. The population in each generation is evalu- The general form of the control signals employed in the
ated by the fitnessgor objectivg function, which acts as a present analysis is a finite Fourier series upltb order with
measure of the adaptability of the solution to the environ-a zero mean, i.e.,

Il. CHAOS CONTROL METHOD WITH GA-OPTIMIZED
WEAK PERTURBATION

A. Multimode control signals
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FIG. 2. Time series ofxy,
phase trajectory on thex;-x,
X, 0F 1 plane, and power spectrum of the
Roéssler system witha=b=0.2,
. 3 i and c=4.6. (a) Uncontrolled cha-
otic state andb) period-9 state af-
ter control signalR, o applied at
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N B. Fitness function
u(t) = n%[an cognat + ¢) + by sinnut + @), (1) The parameters of the control signals, Et), are to be

wherea,, and b, are the amplitudeqiw is the frequency of

optimized by using a genetic algorithm towards the maxi-
mum fitness. In the present work, we propose a fitness func-
tion, F, defined with consideration of the power of the con-

the nth mode, andp is the phase shift. As that shown in Fig. trol signal, P, and the largest Lyapunov exponemt;,

1(a), the amplitudesa,, b, the first-mode frequency, and

calculated from time series of the state variables of the con-

the phasep play the role of genes to form the chromosometrolled system, viz.,

(or individual and the values of the parameters are to

optimized by evolution of GA. The power of the control

signal is expressed in terms of the amplitudes, viz.,

1 N
P==2 (a2+bd. (2)
2o

Most of the previous studies of chaos control using

weak periodic perturbation set the phase difference=a6.

be
1

arvers

, (3
where

AN* = |\, =N/ maxh, =N, P* = PIP,, (4)

aIn the above expression, the parameiar is the absolute
difference between the current value of the largest Lyapunov

However, the phase may play a vital role in suppressing or €xponent of the system state and the preset target valiie

inducing chaos, especially in nonautonomous systgtk

normalized by the worst or maximum deviation, rax

In this paper, effects of the phase shift on controlling chaotic-\|, in the current population. The parameRérdenotes the

autonomous systems are examined.

power of the signal normalized by the maximum powgr
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in the current population. The functidha is maximized as

tion of the parent chromosomes is randomly generated with

AN* and P* both approach minimum values. The definition the preset individual length and the population size. As

of the fitness function given above can guarantee the stabilitghown in Fig. 1a), the individual or chromosome is con-

of the controlled orbits and minimize power required simul-structed with the parameters of the control signals as genes.
taneously. The dynamic behaviors of the chaotic system urRather than encoded by a binary as the most common repre-
der control can thus be turned into a periodic motion. Thesentation of a GA, it is more natural to represent the genes
largest Lyapunov exponent can be determined by using th@irectly as real numbers for the parameters in continuous
algorithm proposed in24]. For a periodically perturbed domains. Therefore, the genotype and the corresponding
state, the target Lyapunov expon&nthas to be set as a phenotype are of the same type, and better precision and

. . ~ convergence rates can be attained.
nonpositive value and a larger negative value ainplies a Step 2. Evaluation fitness and check stopping criterion

more stable target periodic state. To find the minimum poweg . member of the current population is evaluated by the
for achieving the control goal is also one of the major CON-fitness function defined in Eq3). By using\,, to denote

cems. the largest Lyapunov exponent of the best individual in the
current population, stopping criterion can be set|®s,

—\|<e. The searching process is terminated if the criterion
There are many possible variants of the basic genetic ais satisfied, and the individual of maximum fitness in the
gorithm. The steps of the algorithm used in the present worlcurrent generation is taken as the best solution. Otherwise,
are described as follows with selection, crossover, and mutahe searching procedure continues. The tolerarnc0 2 is

tion operations schematically shown in Fig. 1. used in the study.
Step 1. Creation of initial populatiorAn initial popula- Step 3. Roulette wheel selectidrhe roulette or propor-

C. GA process for optimization of control signals
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FIG. 4. Time series of chaos and stabilized periodic states by using the different control signals appiE@l &) the transient time is
138 for the the Rossler system controlled by a signal without phase modu(@#2.15x 107>, a;=0.006 423 30 b, =0.000 001 43 A,
=0.001 276 73,b,=0.000 428 26=1.07850773¢=0); (b) the transient time is 61 for the Rdssler system controlled by a signal with
phase as a parametd®, ; (P=2.0x107); (c) the transient time is 209 for the Lorenz system controlled by a signal without phase
modulation (P=4.0x 1076, a,=0.000 182 69 b;=0.001 156 98 4,=0.000 196 24 b,=0.002 568 11 »=2.853 464 61 ¢=0); (d) the
transient time is 8.6 for the Lorenz system controlled by a signal with phase as a parame(#;=3.82X 10°%, P-9.

tionate wheel selection schematically shown in Figh)Iis  coded by floating-point, it is appropriate to use an arithmetic
adopted in the algorithm. The selection probability of eachcrossover defined as two equations of linear combination
individual is evaluated based on its fithess value. For exf20]:
ample, withN, denoting the population size, the selection

probability p; of theith individual is determined by newy = fold; + (1= p)olds, (63)
Np new, = (1 - g)old, + Bold,, (6b)
P=F ng Fi. ®) where new and new are the resultant offspring of olénd

old, after the crossover operation. The paramgiezan be

Thus a mating pool oN,, individuals is created by selecting set as a constant between 0 anduhiform arithmetical
from the current population according to the probability of crossoveyor varies with the number of generatiofmonuni-
each individual, which is characterized by a randomly seform arithmetical crossover
lected real number uniformly distributed within the range Step 5. Probabilistic mutationMutation occurs to each
[0, 1]. If the random value is less than the cumulative prob-gene of the chromosomes with a probabilipy, which is
ability, the current individual is reproduced to the next gen-usually small. With the coding representation of real num-
eration. The individuals of higher fitness values have moréers, the mutation will randomly change the value of the
chances to be reproduced. The process is repeated until tibromosome within the range of defined variable space. The
entire new population is generated. nonuniform mutation adopted in the present algorithm is de-

Step 4. Probabilistic crossovehe crossover ratgp,  scribed as followg20].
givena priori determines whether the crossover of two chro- DenotingC9=(c,, ... ,¢,) for a chromosome and the ele-
mosomes occurs. By this genetic operation, a partial exmentc; € [l;,u;] in gth generation is supposed to be selected
change of the genetic content between a pair of the membets mutate. The result is a vect®@9*'=(cy,...,c/,...,C)
in the population occurs. For the present chromosomes ewvith i {1, ... k}, and
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¢ +A(g,u —¢) if =0 7.5

¢ :{cim(g,ci—h) it y=1,

where y is a randomly generated two-valu€@dl or 1) index
used to determine which one of the two expressions is em-
ployed for the evaluation of/. The functionA(g,s) is de-
fined as

)

A(g,9) =1 1t~ Iomad" ], ®)

in whichr is a random number in the intervid, 1], Oynax iS

the given maximum number of generations, and the user-
specified parametds* determines the degree of dependence
on the number of iterations. The functiak(g,s) gives a
value in the rangg0,s] such that the probability of mutation
diminished agy— g,,. This property renders this operator to
search the space uniformly asis small initially but very
locally at later stages, and thus increases the probability of
generating a new number closer to its successor than a ran-
dom choice.

Step 6. Application of elitism strategiMew offspring are
generated and each member of the offspring is then evalu-
ated by the defined fithess function. To improve the conver-
gence rate, an elitism strategy, i.e., 50% of individuals with
high fithess values, is selected from the pool of the parents as
well as the offspring to update the resultant population and
then go back to step 2.

20

15

D. Numerical details

The simulation procedures are coded in C-language. The

fourth-order Runge-Kutta integration method is used to solve 5
the evolution equations with given initial conditions. In the

present simulation, the population sikg=200, the cross-

over ratep.=0.7, the constan8=0.95, and the mutation pa- 0
rameter9,,=0.4 andb* =0.1 are adopted. Usually, time-step

(At) of the order 10" or 1072 are used for simulation of the
Rossler system and 19for the Lorenz systeni25-2§. In
the present study, smaller time-step sizeAtf5x 1072 and

5x 107 are employed for the Rossler system and Lorenz FIG. 5. Variations of maximum and averaged fitness values dur-
ing the evolution of the population for optimization of control sig-
Lyapunov exponents are calculated by the algorithm pronals.(a) Rossler system with optimized sign#&s o and(b) Lorenz

system, respectively.
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posed by Wolfet al. [24]. With time-step in a wide range, system with optimized signals o

At=5x1073-10" and the time series length of 400 time

units (t=100-500, the value ofi; span over the range of |, While an extended interval can be employed as a signal of

0.1238-0.1275 for the Rdossler system, and 2.1507-2.1644igher power is desired.

for Lorenz system withAt=104-1072. With At=5Xx10"3
and the time series length of 1@06=400-500 to 400 time
units (t=100-500, the calculated\; lies in the range
of 2.1634-2.1695. In the form of(meant(sample
standard deviation the above data for the Rdssler system
can be expressed as 0.12545+0.00153 and that for the Lo-
renz system as 2.16206+0.00730. The results demonstra
that, at least in the ranges we considered, the calculatéex
not very sensitive to the time-step size and the length of th
time series.

In the present study, the searching interval for frequency
w is selected around a resonant frequency, the interval
[-2m, 2] is for searching phase, and the interval0, 0.0]
is usually assigned for optimization of the amplitudesind
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Ill. RESULTS AND DISCUSSION

Xp ==X =Xz + u(t),

Xo = Xq + aXy,

60

In this section, we show a series of numerical simulations
to demonstrate the effectiveness and robustness of the pro-
osed method under various conditions. Two noted nonlinear
?Stems with a perturbation signalt) involved are em-
gloyed as the test models. The first one is the Rdssler system:
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X3 = XX — CXg + b, the special one oM =0 denotes the signals with zero phase

shift ¢=0, which was considered in the previous studies,
in which a, b, andc are system parameters, and the perture.g.,[10,13.
bation u(t) acts as an external control force applied on the

first component of the vectok=(x;,X;,X3). The second A. Fundamental features of the control strategy

model is the Lorenz system: To verify the effectiveness of the present GA-based

method, results are compared with that by the previous chaos
control methods, e.g., RfL3]. First, the weak periodic per-
turbation control of the Rdéssler system is performed. The
y=—-xz+R[1+u(t)]x-vy, (10 system parameters are set toaeb=0.2 andc=4.6, which
correspond to a chaotic attractor. The power spectrum of the
uncontrolled Rossler system is shown in Figa)2lt is ob-
served that the strongest energy-contained mode is that of the

where the three system parameters are Pr standing féféduency«=1.099. To compare with the results O_f Mettin
Prandtl numberR for normalized Rayleigh number, argl ~ and Kurz, at first, the same conditions ¢£0 andb,=0 of
for geometry of the system. Different from the Rossler sys{N€ control signal and the searching range of frequency in-
tem, the Lorenz system is used to study the effects of thifTval @ [0.520,0.562 are considered for comparison.
perturbation in a system parameter, iRin this model. The Then the optimization of control signal with perturbation fre-
present GA-based method with control signals of one modduéncy in the intervab € [1.0,1.1 is also performed.
(N=1) up to five modes(N=5) is studied and the results Simulations are _performed with |r12|t|al condmon(Q)
without phase shift=0) are compared with the results of =(5.0,5.0,5.0 and time step\t=5X10"%. The control sig-
the non-GA-based control performed by Mettin and Kurznal is applied to the system at the time instan60. The
[13]. control target is set to be a state with the largest Lyapunov
To designate various control signals with different modesexponentA=0. The optimum Fourier coefficient@mpli-
and conditions, the notatiorf®, \, andLy y are, respectively, tudes, frequencies, and powers for the control signals under
used for the Rossler and Lorenz systems, in which the sulsonsideration are shown in Table I. It is revealed that the
scriptN is the number of mode. The subscridtis an index necessary powers of control signal obtained by the present
for designation of various signals with the same mbidand  method are significantly lower, e.g., the controlling power

x=Pr(y - x),

z=xy-bz

016211-7
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TABLE |. Comparison of amplitudes, frequencies, and powers of the optimized periodic signals for chaos control of the Rdssler system
by the present and Mettin-Kuifd3] methods(NA denotes not availablg.

Present Mettin-Kurz
we[1.0,1.7 w e[0.520,0.562 w €[0.520,0.562
Amplitudes Power Amplitudes Power Power
Signal and frequency (periodk) and frequency (periodk) (periodk)
Rio a,=0.006 404 60 P=2.05x10° 2,=0.148 293 15 P=1.10x 1072 P=2.23xX 1072
»=1.07886172 (P-9 ®=0.538 191 37 (P-8 (NA)
R2.0 a;=0.006 235 30 P=2.00x 107° a;=0.000 000 17 P=2.03x10° P=9.95x 1072
a,=0.001 012 61 (P-9 a,=0.006 378 30 (P-9 (NA)
b,=0.000 007 84 b,=0.000 057 46
»=1.07882198 ®=0.53931531
R0 a;=0.006 285 42 P=2.03x10° a,=0.000 009 61 P=2.06x 107 P=5.42x 1072
a,=0.001 023 36 (P9 a,=0.006 412 48 (P-9 (NA)
b,=0.000 005 95 b,=0.000 016 51
a3=0.000 061 31 a3=0.000 059 14
b;=0.000 100 27 b;=0.000 121 73
»=1.07882809 ®=0.53943871
Rs.o a,=0.006 518 76 P=2.26x10"° a;=0.000 015 64 P=2.07x10° P=2.04x1073
a,=0.001 386 62 P-9 a,=0.006 37542 (P-9 (P-3

b,=0.000 831 98
a;=0.000 000 64
by=0.000 002 92
a,=0.000 105 94
b,=0.000 048 45
a5=0.000 035 74
bs=0.000 012 22
©=1.078 39252

b,=0.000 004 67
a;=0.000 001 74
bs=0.000 002 01
a,=0.000 835 67
b,=0.000 001 45
a5=0.000 009 34
bs=0.000 002 06
»=0.539 284 93

found by the GA-based method with the sigridd, (w using different sets of random populations have the powers
€[1.0,1.1) is even smaller than 1% of the power of signal of the same order. Nevertheless, employing an optimized
Rs o proposed in13]. Control effectiveness can be demon- n-mode signal as a basic form with an additional mode added
strated from the periodic state of periode® simply denoted to build the(n+1)-mode signal, the time taken for optimiza-
by P-9 in Fig. 2(b), which is turned from the chaotic state of tion of this (n+1)-mode signal can be dramatically short-
Fig. 2@) after the optimized signaR; o is applied. ened. For example, to reach optimization of a 4-mode signal

It is also shown that the two-mode sigri@&l=2) has re-  with an optimized 3-mode signal as a base takes only about
markably lower power as compared with the single-model0% of the time for the searching with randomly selected
However, further increase of the number of the modes has nimdividuals. However, it has no noticeable advantage in re-
significant advantage in reduction of the power. For theduction of the signal power needed for control. As an opti-
present high effective GA-based method of global searcimized signal is applied to control a chaotic system, using
ability, the degrees of freedom f&t=2 or 3 are sufficient. different initial states of the system influences the length of
Adding more modes could result in a minor change, e.g.the transient stage, but it cannot change the period number of
107 or less, in power. Therefore, even 5, the power of  the final state.
the optimum signal cannot be further reduced but remains as As to the chaotic behavior of the Lorenz system, a typical
the same order. However, searching for a signal of modease at Pr=10)=0.4, andR=80 is shown in Fig. @). From
numberN=2 or 3 needs considerably less computationathe power spectrum of the uncontrolled state, a high energy-
time in GA optimization, e.g., time for reaching at optimiza- contained mode at the frequency appearing arourd
tion of a signalR, o (N=2) is only 6.9% of the time needed =2.84, the simulation was carried out with the frequency
for Rs o (N=5) for the Rossler system. searching interval, w €[2.7,3.1, the time period t

In the present GA optimization, searching procedures ares [0,500, time stepAt=5x107%, and the initial condition
initiated with randomly selected individuals as the first gen-(Xo,Yo,2)=(0.1,0.1,0.1. The optimized signals of various
eration. It is found that the optimized signals generated bynodes determined by the present approach are shown in
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TABLE II. Comparison of the optimized periodic signals for -3 T T T 7 T
chaos control of the Lorenz system determined by the present RS Y
method and Lui-Leite’s methof0]. (NA denotes not availablg.

Present Lui-Leite
Amplitudes Power Power
Signal  and frequency (periodk) (periodk)

Lio @a,=0.00806477 P=3.252<10° P=3.125x10*
0=2.865 443 64 (P-3 (P-)

L, @a=001248636 P=7.8x10°
»=2.869 580 86 (P-D

Lo @,=0.00003429 P=3.849x10° NA
a,=0.000 575 57 (P-4
b,=0.002 713 77
w=2.859 728 37 @)

Lso 2=0.00007578 P=2.014x10° NA 351 LT ! ' ' C
a,=0.001 562 58 (P-9 CrEe 3 : o
b,=0.000 991 16 T ? 5 L
a;=0.000 770 39 355k, | . . e ]
b3=0.000 074 24 T : : :
©=2.854 976 44 X LA . ] T

Lsp @=0.00057648 P=4.787x10° NA . Q'.‘: : ’ sae S
a,=0.000 052 68 (P-8) 3.6 [ . % . v ]
b,=0.002 922 41 L - T . ; L
a;=0.000 343 98 L. ) . R
b;=0.000 404 44 RN . RN

_ -3.65 bae aa 1 1 1 1 le®*
a,=0.000 084 53 0 1000 2000 3000 4000 5000 6000
b,=0.000 482 34 t
as=0.000 000 23 )
bs=0.000 420 19
©=2.841934 96 FIG. 7. (a) Switching control of the Rdssler system. Control is

activated in the time period=1000 to t=5000 and switched
betweenR, ; (P=2.0X10°% P-9 and R,, (P=6.41xX107%, P-5
Table Il. The comparison shows that the power of the signalgvery 1000 time units. The phase shifts at various stages
L1 pandLs,found by the present GA-based optimization areare t=1000: ¢=0.680 205 08;t=2000: ¢=2.100 468 85;t=3000:
only 10.4% and 0.64%, respectively, of the Lui-Leite’s result®=-5.890 236 16¢=4000: ¢=-3.088 813 90; the Poincaré section
[10]. Besides, it also shows that increasing the number off X2=0; (b) Switching control of the Lorenz system. The signal is
Fourier modes does not necessarily reduce the control powesr‘."”t(*;eOI betweerl,; (P=3.82x10° P-§ and L4 (P=2.63
Figure 3b) reveals that a periodic state of P-8 can be*10> P-D. The phase shifts at various stages
achieved by the present chaos control with the optimized"®!=1000:¢=-6.249 884 431=2000: 9=3.274 711 35{=3000.
three-mode signaLa,o. With a larger searching range of the (p_:5.807 548 181=4000; ¢=4.212 247 43. The Poincaré section is
amplitudes, we found a one-mode sighal, (in Table ) of -
a higher powerP=7.8x107° which can lead the chaotic
system to an orbit of P-1. The power bf 4 is only 25% of 209 to 8.6. It is revealed that, for autonomous systems, the
that found by Lui and Leitg10]. ’ consideration of phase modulation has little benefit to the
Figures 4a) and 4b), respectively, show the chaos con- reduction in signal power but may considerably shorten the
trol results of the Rossler system with optimized 2-modetransient time during the control.
signals without and with phase modulation applied=a50. Figure 5 shows the maximum and averaged fithess values
It reveals that the signaR,; with ¢ as one of the signal during the evolution of the population for the optimization of
parameters considerably reduces the transient time peride signalsR, , andL; o Although fluctuations appear, both
from 138 to 61 time units. The results in Figgcpand 4d)  the maximum and average values of the fithess function
are those of the Lorenz system controlled by optimizedpresent an ascending trend during evolution. It demonstrates
2-mode signals without and with phase modulation, respechat the present method effectively leads the evolution pro-
tively. Similarly, the transient time has been minimized fromcedure towards the solution of a high fitness.
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TABLE lll. The amplitudes, frequencies, phases, and powers of various two-mode periodic signals for chaos control of the Rdssler and
Lorenz systems.

Amplitudes, Power Amplitudes, Power
Signal frequency, and phase (periodk) Signal frequency, and phase (periodk)
Ro1 a,=0.004 805 86 P=2.0x107° Lo a,=0.000 900 56 P=3.82x 107
b;=0.003 932 12 (P-9 b;=0.000 680 13 (P-8
a,=0.001 094 59 a,=0.002 121 33
b,=0.000 515 84 b,=0.001 363 36
0=1.078 652 82 ©=2.855124 93
©=-5.23487041 ©=6.025 226 12
Ry a;=0.024 739 64 P=6.41x 107 Loo a,;=0.000 043 65 P=6.20x 1076
b,=0.025 871 47 (P-9 b;=0.000 304 84 (P-2
a,=0.000 368 35 a,=0.003 120 92
b,=0.000 365 72 b,=0.001 598 80
0=1.078 039 18 ©=2.87392599
©=1.688084 58 ©=4.336 693 31
Ro.3 a,;=0.034 076 75 P=6.60x107* Los a;=0.003 695 43 P=1.71x 1075
b,;=0.012 536 76 (P-9 b,=0.000 503 93 (P-1
a,=0.000 497 81 a,=0.004 496 72
b,=0.000 593 01 b,=0.000 271 69
0=1.078179 37 ©=2.847 096 83
¢=-3.478568 18 »=-1.890718 84
Ro.4 a;=0.171 806 30 P=2.08x107? Loa a,=0.000 184 50 P=2.63x10°
b,=0.110 167 62 (P-3 b,=0.003 561 62 (P-)
a,=0.001 065 55 a,=0.006 306 10
b,=0.005 500 15 b,=0.000 116 58
0=1.067 792 45 ©=2.84172561
¢=-4.838595 65 ©=3.27471135

To examine the effects of the perturbation frequency anadhal, it cannot alter the period number of the orbit. Neverthe-
amplitudes on the stability characteristics of the controlledess, the period numbdsof the controlled orbit depends on
system, Fig. @) presents the variation of the largest o power of the control signal. For example, wik
Lyapunov exponenv‘M, with th_e change in th_e pertgrk_)atlon -0.01, frequency searching range= [2.7,3.1, and the am-
frequency,w, at the fixed amplitude; =0.1; while variations plitude searching ranges 0, 0.01 and [0, 0.1, respec-
of the largest Lyapunov exponent with the perturbation @Mively, we can find a two-moée signal @l‘:é.83><,1(TG for

plitudea; at the fixed frequencyw=1.0789 are shown in Fig. S « 10°4 .
6(b). The similar characteristics of the Lorenz system aréJerIOd 8 and a stronger one Bt=6.08x 10 for period-1.

shown in Fig. c) for the variation of\; with the perturba-
tion ata;=0.05 and Fig. @) for that at the fixed frequency,
»w=2.86. It is observed that several very narrow periodic Figure fa) is a typical example of switching control on
windows emerge between the chaotic regions. The deepéhe Rossler system. The switching signals include the previ-
valleys appear as the frequency of the control signal apeus signalR;; (P-9) and another two-mode signal of higher
proaching the resonant frequency. Several periodic windowpower, R; , (P-5. The amplitudes, frequencies, phases, and
emerge at smaller amplitudes. It confirms that weak resonanowers of these signals are presented in Table Ill. The sys-
perturbation signals can be employed to suppress chaos. Tham is initially chaotic until the signd®, ; applied at the time
amplitude or power and resonant frequency are significannstantt=1000. The system behavior is a periodic st&t).
parameters for suppressing chaos. At t=2000, the control signal is replaced By, and a new

To bring the system to a state of specified period numbeperiodic state of P-5 appears. One more cycle of switching
(periodk), we need a parameter acting as a quantitative inbetween P-5 and P-9 is subsequently carried out every 1000
dex to characterize the value kf Unfortunately, to the best time units. Finally, att=5000, the control signal is totally
of our knowledge, there is still no such kind of target indexremoved and the system returns to the chaotic state. This
in the existing chaos control methods. The initial conditionswitching process of the sequence: Qéhaotic attractor
has no obvious influence on the power of the optimized sig— P-9— P-5— P-9— P-5— CA is shown in Fig. 7a) with

B. Switching control between different states

016211-10



CONTROLLING CHAOS WITH WEAK PERIODIC..

0.06

0.04

A 002

-0.4 = L 5 0
10 10 10 10 X

© c

0.6

0.4 |
0.2 B
Ay o
-0.2 + B
o2 W _
-0.6

107" 16" 10"
(d) o

PHYSICAL REVIEW E 70, 016211(2004)

I .
..l.. ¢

s o0’ o

LI T3
: -
2. H
* L
. e
- . et
en . .
- b hd - -
: < . .. J
- L - -.. -
: . .
. ' H .
- - -
§ i B
: 3 PR,
e . | . i
e grem—— H e oo
}-3 » [s - - L
L TN
. . LIRCIRA
. J
*. [ ] - .o o

2 1t

e - -

L 1 1 1 [l
1000 2000 30t00 4000 5000 6000

FIG. 9. (a) Switching control of noise-perturbed Rdssler system

FIG. 8. Influence of Gaussian noise level on the controlled(c=5X 10" in the time period=1000 to 5000 with alternatively
Rossler and Lorenz systems: the largest Lyapunov exponens application of the signalsR,, (P=6.41x10% P-5 and Ry,
the noise levebr with applications of control signalga) threshold  (P=2.08x 1072, P-3 every 1000 time units. The phase shifts
noise leveloy,=2.7x 1077 for Ry 1 (P-9), (b) threshold noise level at various stages are=1000:p=2.021299 01t=2000: ¢=
01,=8.2x 107 for Ry, (P-5), () threshold noise level threshold -1.960 980 48;
op=1.5x10"2 for L, (P-8, and (d) threshold noise levebry, —3.793784 08 andb) Switching control of noise-perturbed Lorenz
=7.6x 1071 for Ly 4 (P-D). system(o=10"%). The signal is switched betwedr, , (P=6.20

%1075, P-2 andL, 3 (P=1.71x 10°°, P-1) every 1000 time units.
The phase shifts at various stages &rd000:¢0=4.336 693 31t

the state variable; on the Poincaré sectio=0 plotted vs
time. Figure 7b) shows the switching control of the Lorenz

t=3000: ¢=5.17922527; t=4000: o=

=2000: ¢=-1.890 718 84;t=3000:¢=4.336 693 31,;t=4000: ¢
=1.642 425 00.

system by alternately applying control signals,(P-8) and  noise can be the external disturbances to the system or the
L, 4(P-1). The sequence of this process is: 6#-8—P-1  uncertainties due to inexactness in modeling of the system.
— P-8—P-1—CA. The histogram ok on the Poincaré sec- The Gaussian white noise with zero mean is added to all the
tion y=-5 is presented. The transient stage in each switchin§t@te variables of the systems from the initial time instant
process is evidently quite short, which is evidence of the=0. The noise level is measured by the standard deviation

control effectiveness of the present chaos control method. ©f the Gaussian distribution. _
To understand the influence of the noise on the controlla-

bility, the variation of the largest Lyapunov exponent with

C. Control of noise-perturbed systems

the change in the noise levelis examined. Accurate thresh-
old of the noise level can be determined by measuring the

largest Lyapunov exponent. For the control sigrigis (P-9)
For practical applications of chaos control, the robustnesandR; , (P-5), plots of \; vs o are shown in Figs. @) and
of the method in the presence of noise is significant. The3(b). Each curve presented here represents the average value
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a noise levelr=5x 10" is considered. The control input of

a two-mode signal is adopted and the perturbation frequency
is searched for in the range afe[1.0,1.3. Figure 1Q@a)
shows that the chaotic behavior of the uncontrolled system is
tamed after the control sign&, ; applied att=1000 and the
system is led to a periodic motion of period-5. As the param-
eterc is abruptly changed to the value of5.7 att=2000,

the system behaves chaotically again if the control signal is
kept the same. However, by applying a new signgl
=9.21x 10, P-6) aftert=2000, the system can be continu-
ously stabilized and brought to a new state of P-6, Figh)yL0

R | IV. CONCLUDING REMARKS

S P, In the present work, we have developed a novel nonfeed-
back chaos control method with GA-optimized weak peri-
odic perturbation signals. On the two noted nonlinear sys-
tems, the ROssler systerfexternal forcing contrgl and
Lorenz systeniparametric contrg) it has been demonstrated
that the present method can work effectively and robustly on

10, 1000 2000 3000 the systems with and without the presence of a background
t noise. Besides the above-mentioned merits, the following
®) conclusions can be drawn based on the present results and
FIG. 10. Control targets of the noise-perturbed Rossler systenanalysis.
(0=5X10"%) with abrupt change in the parameteat t=2000.(a) (1) Compared with previous methods, in general, the

Chaos control by applying, 3 at t=1000, parametec abruptly  present approach can achieve the control goal with signifi-
changes from 4.6 to 5.7 d=2000 but the control signal is un- cantly lower power, ranging from one to three orders of mag-
changed, andb) the control signal also alte®=9.21x10%, P-§  njtyde in difference. The power of each control signal found
att=2000 for taming the new chaotic behavior. by this approach does not necessarily decrease with the in-

obtained from ten independent runs with the random numbegrease of additional Fourier modes. It has been demonstrated
generator reset. One can observe that the stability of the cofhat the present method performs very effectively by using
trolled system is destroyed as the noise levehised up to a the signal of low modes, i.e., two or three in the cases stud-
threshold valuesy,~2.7x 107 for the signalR,; and oy,  ied. This fact is especially significant in practical applica-
~8.2X10™* for Ry ,. The results show that the lower the tions, in which the cost of computation is one of the major
control power is, the less robust the signal. This point waggncerns.

also mentioned in a previous work, R¢L3]. Similar to the (2) The period numbek of the controlled orbit at the final

above study for the Rossler system, the stability of the congio janends on the power of the control signal. The initial
trolled Lorenz system with the influence of noise is shown in - . )
condition does not obviously change the power of the opti-

Figs. . The threshol ise level i
lgs. 8c) and &d) e threshold noise level igr mized signal and, in turn, no influence on the period number

~1.5x1072for L, ; and oy, =~ 7.6X 1072 for L, 4. . . - .
The effectiveness of the switching control in the presencéf the orbit. However, using an optimizeemode signal to

of background noise is studied by repeating the cases in Figonstruct individuals of (n+1)-mode can dramatically
7. The noise level is set as=5x 1074 for the Réssler system shorten the time required for optimization. For the autono-
and 0=10"* for the Lorenz system. In Fig.(8), the switch- mous systems, the phase of the control signal considerably
ing signalsR, AP-5 and R, , (P-3) are employed for the shortens the transient time period before reaching the control
switching seq'uence of CAP-5-P-3—P-5-P-3—CA. target but has little influence on the power of the optimized
For the Lorenz system, Fig.(9 shows the sequence of signal and the period number.
CA—P-2—P-1—P-2—P-1—CA by alternatively apply- (3) Several topics are worthy of future investigations. For
ing the control signalé., » (P-2) andL, 3 (P-1). Both cases example, besides the periodic control signals of Fourier
demonstrate the effectiveness of the present method in noiséerm, other possibilities, such as step functions, impulse
disturbed systems. However, comparing with the noise-freunctions, etc., can also be considered. Developing a method
counterparts, a little stronger control signals have to be usedio specify the period number of the target state is also an
attractive issue. In addition, hybrid algorithms, which use a
D. Control of noise-disturbed systems with abrupt change in - compination of genetic algorithms and other gradient search
parameters technigques to enhance the efficiency of the search, and alter-
As an illustrative example, a noise-disturbed Rossler sysnative fithess functions are both interesting and worthwhile
tem of chaotic state @=b=0.2 andc=4.6 in the presence of for further study.
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