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In the present study we develop a relatively novel and effective chaos control approach with a multimode
periodic disturbance applied as a control signal and perform an in-depth analysis on this nonfeedback chaos
control strategy. Different from previous chaos control schemes, the present method is of two characteristic
features:(1) the parameters of the controlling signal are optimized by a genetic algorithm(GA) with the largest
Lyapunov exponent used as an index of the stability, and(2) the optimization is justified by a fitness function
defined with the target Lyapunov exponent and the controlling power. This novel method is then tested on the
noted Rössler and Lorenz systems with and without the presence of noise. The results disclosed that, compared
to the existing chaos control methods, the present GA-based control needs only significantly reduced signal
power and a shorter transient stage to achieve the preset control goal. The switching control ability and the
robustness of the proposed method for cases with sudden change in a system parameter and/or with the
presence of noise environment are also demonstrated.
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I. INTRODUCTION

A. Chaos control methods

Chaotic systems are characterized by their extreme sensi-
tivity to the initial conditions; although the chaotic motion
may be useful in some cases such as mixing of multicompo-
nent fluid systems and some secure communications. On the
other hand, its irregularity and unpredicability are undesir-
able in most practical applications. For these situations, one
may wish to prevent or suppress the occurrence of chaotic
behaviors. In the past years, various chaos control methods
have been developed. Chaos control approaches can be
broadly classified into two categories: feedback and nonfeed-
back methods. The feedback control chaos methods stabilize
one of the unstable periodic orbits(UPOs) embedded in its
chaotic attractor by applying small temporal perturbations to
an accessible system parameter[1–6]. For some high-speed
systems such as chaotic circuits and fast electro-optical sys-
tems, there is difficulty in attaining real-time data of the sys-
tem parameters and variables. In contrast to the feedback
control techniques, the nonfeedback methods suppress cha-
otic motion by changing the system dynamics from a chaotic
attractor to a periodic motion[7–18]. Relatively nonfeedback
methods have the advantages in speed, flexibility, and no
online monitoring and processing required. This class of con-
trol approaches is suitable for applications where no real-
time or only highly limited measurements of the systems are
available.

The nonfeedback methods include introduction of weak
periodic parameter perturbation[7–13], constant force or
bias [14], weak periodic pulses, open-loop entrainment con-
trol [15], and weak noise signals[16]. Comprehensive dis-
cussion of a variety of nonfeedback chaos control methods
can be found in recent literature, e.g., Refs.[17,18]. For sup-
pression of chaos, to use a weak periodic perturbation signal
is simplest and easiest to implement among the existing non-
feedback chaos control methods. In a previous work[7], it
has been shown that one of the infinite UPOs embedded in
the chaotic attractor can be approached and stabilized by
applying a small periodic perturbation to a system parameter
or as an external force. Suppressing chaos in a low dimen-
sional system by using a signal of resonant frequency has
been confirmed analytically[8] and experimentally[9], and
more applications can be found elsewhere, e.g.,[10–12].

Recently, Mettin and Kurz[13] proposed an optimization
of multiple-mode signals and performed switching control
between different target states without the presence of noise.
In their method, a cost functional was defined and minimized
by an optimization algorithm combining the simulated an-
nealing technique and the downhill simplex method. The
functional contains the control signal power as well as a
measure of the control performance, i.e., mean recurrence
distances. However, the mean recurrence distances may not
be defined perfectly, and the performance of optimization has
to be improved by a properly selected technique. Further-
more, for systems with a dynamic change in a governing
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parameter and/or a noisy environment, a more robust control
method is needed.

B. Genetic algorithms

Calculus-based search methods usually assume a smooth
search space, and most of them use a gradient-following
technique. Different from the conventional optimization
methods, genetic algorithms(GAs) borrow the concepts and
operations from Darwinian evolution[19,20]. Genetic algo-
rithms are inherently a class of global search techniques uti-
lizing the principle of survival of the fittest and have great
potential in practical applications. The simulation starts with
one set of randomly generated individuals. Each individual
in the population representing a solution to the problem is
called achromosome. A chromosome is a string of symbols
and is usually in the form of a binary bit or floating-point
string. The chromosomes evolve through successive itera-
tions and the evolution leads the search toward the area of
the best solution. The population in each generation is evalu-
ated by the fitness(or objective) function, which acts as a
measure of the adaptability of the solution to the environ-

ment. The fitness function guides the searching process with-
out any requirement of derivatives or other auxiliary knowl-
edge. A solution with a higher fitness value is relatively
better, although the maximum possible fitness might not be
known. The proper choice of the fitness function determines
the speed at which the algorithm converges. Then, a new
generation can be created by using areproductionoperator to
select the most fitting individual. To obtain other points in
the searching space, after the reproduction, the probabilistic
crossoverandmutationoperators are applied according to a
preset probability for each. Variations are introduced into the
new population by means of idealized genetic recombination
or crossover operator. The mutation is a random walk pro-
cess through the string space.

The major characteristics of a GA-based optimization dis-
tinct from that of the traditional random search methods are:
(a) a GA has a searching direction based on the probabilistic
operations;(b) a GA has an evolution mechanism which al-
lows the better strings to generate more offspring; and(c) the
average fitness is likely to be improved after some genera-
tions.

C. Objective of the present work

In the present study, we attempt to develop an effective
and robust approach to suppress chaotic behavior and lead
the controlled system to a periodic state even for the systems
with a dynamic change in a governing parameter and/or a
noisy environment. A genetic algorithm is adopted in the
present study for their merits of rapid and efficient global
searching ability and effectiveness in optimization problems
whose gradient information is not available. The largest
Lyapunov exponent is a quantitative measure of chaos and
the signal power needed is an index of the performance.
Therefore we adopt these two quantities in definition of the
fitness function to measure the achievement of the preset
control goal and the stability of the stable orbits. The control
signal is described by a finite set of real parameters(i.e.,
Fourier modes) and thus is restricted to a certain control
function space. The proposed approach is tested on the noted
Rössler[21] and Lorenz[22] systems and the results are
compared with previous chaos control methods to demon-
strate its superiority.

II. CHAOS CONTROL METHOD WITH GA-OPTIMIZED
WEAK PERTURBATION

At first, the evolution dynamics of a system is examined.
In power spectra of an uncontrolled system, there appear
various modes or UPOs embedded in its chaotic attractor,
from which a certain peak is chosen as the target frequency
and the searching range of the frequency of the perturbation
signal is set around the target mode.

A. Multimode control signals

The general form of the control signals employed in the
present analysis is a finite Fourier series up toNth order with
a zero mean, i.e.,

FIG. 1. Illustration of the GA operations used in the present
work. (a) Representation of the chromosome;(b) roulette wheel
selection;(c) arithmetic crossover operation, and(d) nonuniform
mutation operation.
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ustd = o
n=1

N

fan cossnvt + wd + bn sinsnvt + wdg, s1d

wherean andbn are the amplitudes,nv is the frequency of
thenth mode, andw is the phase shift. As that shown in Fig.
1(a), the amplitudes,an, bn, the first-mode frequencyv, and
the phasew play the role of genes to form the chromosome
(or individual) and the values of the parameters are to be
optimized by evolution of GA. The power of the control
signal is expressed in terms of the amplitudes, viz.,

P =
1

2o
n=1

N

san
2 + bn

2d. s2d

Most of the previous studies of chaos control using a
weak periodic perturbation set the phase difference asw=0.
However, the phasew may play a vital role in suppressing or
inducing chaos, especially in nonautonomous systems[23].
In this paper, effects of the phase shift on controlling chaotic
autonomous systems are examined.

B. Fitness function

The parameters of the control signals, Eq.(1), are to be
optimized by using a genetic algorithm towards the maxi-
mum fitness. In the present work, we propose a fitness func-
tion, F, defined with consideration of the power of the con-
trol signal, P, and the largest Lyapunov exponent,l1,
calculated from time series of the state variables of the con-
trolled system, viz.,

F ;
1

Dl * + P*
, s3d

where

Dl* ; ul1 − l̃u/ maxul1 − l̃u, P * ; P/Pm. s4d

In the above expression, the parameterDl* is the absolute
difference between the current value of the largest Lyapunov

exponent of the system statel1 and the preset target valuel̃,
normalized by the worst or maximum deviation, maxul1

− l̃u, in the current population. The parameterP* denotes the
power of the signal normalized by the maximum powerPm

FIG. 2. Time series ofx1,
phase trajectory on thex1-x2

plane, and power spectrum of the
Rössler system witha=b=0.2,
and c=4.6. (a) Uncontrolled cha-
otic state and(b) period-9 state af-
ter control signalR2,0 applied at
t=50.
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in the current population. The functionF is maximized as
Dl* and P* both approach minimum values. The definition
of the fitness function given above can guarantee the stability
of the controlled orbits and minimize power required simul-
taneously. The dynamic behaviors of the chaotic system un-
der control can thus be turned into a periodic motion. The
largest Lyapunov exponent can be determined by using the
algorithm proposed in[24]. For a periodically perturbed

state, the target Lyapunov exponentl̃ has to be set as a

nonpositive value and a larger negative value ofl̃ implies a
more stable target periodic state. To find the minimum power
for achieving the control goal is also one of the major con-
cerns.

C. GA process for optimization of control signals

There are many possible variants of the basic genetic al-
gorithm. The steps of the algorithm used in the present work
are described as follows with selection, crossover, and muta-
tion operations schematically shown in Fig. 1.

Step 1. Creation of initial population. An initial popula-

tion of the parent chromosomes is randomly generated with
the preset individual length and the population size. As
shown in Fig. 1(a), the individual or chromosome is con-
structed with the parameters of the control signals as genes.
Rather than encoded by a binary as the most common repre-
sentation of a GA, it is more natural to represent the genes
directly as real numbers for the parameters in continuous
domains. Therefore, the genotype and the corresponding
phenotype are of the same type, and better precision and
convergence rates can be attained.

Step 2. Evaluation fitness and check stopping criterion.
Each member of the current population is evaluated by the
fitness function defined in Eq.(3). By using l1,o to denote
the largest Lyapunov exponent of the best individual in the
current population, stopping criterion can be set asul1,o

− l̃u,«. The searching process is terminated if the criterion
is satisfied, and the individual of maximum fitness in the
current generation is taken as the best solution. Otherwise,
the searching procedure continues. The tolerance«=10−3 is
used in the study.

Step 3. Roulette wheel selection. The roulette or propor-

FIG. 3. Time series ofx, phase
trajectory on thex-y plane, and
power spectrum of Lorenz system
with Pr=10, b=0.4, and R=80.
(a) Uncontrolled chaotic state
and (b) period-8 state after a
three-mode control signalL3,0

(P=2.014310−6, P-8) applied at
t=50.
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tionate wheel selection schematically shown in Fig. 1(b) is
adopted in the algorithm. The selection probability of each
individual is evaluated based on its fitness value. For ex-
ample, withNp denoting the population size, the selection
probability pi of the ith individual is determined by

pi = FiYo
j=1

Np

Fj . s5d

Thus a mating pool ofNp individuals is created by selecting
from the current population according to the probability of
each individual, which is characterized by a randomly se-
lected real number uniformly distributed within the range
[0, 1]. If the random value is less than the cumulative prob-
ability, the current individual is reproduced to the next gen-
eration. The individuals of higher fitness values have more
chances to be reproduced. The process is repeated until the
entire new population is generated.

Step 4. Probabilistic crossover. The crossover ratepc
givena priori determines whether the crossover of two chro-
mosomes occurs. By this genetic operation, a partial ex-
change of the genetic content between a pair of the members
in the population occurs. For the present chromosomes en-

coded by floating-point, it is appropriate to use an arithmetic
crossover defined as two equations of linear combination
[20]:

new1 = bold1 + s1 − bdold2, s6ad

new2 = s1 − bdold1 + bold2, s6bd

where new1 and new2 are the resultant offspring of old1 and
old2 after the crossover operation. The parameterb can be
set as a constant between 0 and 1(uniform arithmetical
crossover) or varies with the number of generations(nonuni-
form arithmetical crossover).

Step 5. Probabilistic mutation. Mutation occurs to each
gene of the chromosomes with a probability,pm, which is
usually small. With the coding representation of real num-
bers, the mutation will randomly change the value of the
chromosome within the range of defined variable space. The
nonuniform mutation adopted in the present algorithm is de-
scribed as follows[20].

DenotingCg=sc1, . . . ,ckd for a chromosome and the ele-
mentci P fl i ,uig in gth generation is supposed to be selected
to mutate. The result is a vectorCg+1=sc1, . . . ,ci8 , . . . ,ckd
with i P h1, . . . ,kj, and

FIG. 4. Time series of chaos and stabilized periodic states by using the different control signals applied att=50, (a) the transient time is
138 for the the Rössler system controlled by a signal without phase modulationsP=2.15310−5, a1=0.006 423 30,b1=0.000 001 43,a2

=0.001 276 73,b2=0.000 428 26,v=1.07850773,w=0d; (b) the transient time is 61 for the Rössler system controlled by a signal with
phase as a parameter,R2,1 sP=2.0310−5d; (c) the transient time is 209 for the Lorenz system controlled by a signal without phase
modulation sP=4.0310−6, a1=0.000 182 69,b1=0.001 156 98,a2=0.000 196 24,b2=0.002 568 11,v=2.853 464 61,w=0d; (d) the
transient time is 8.6 for the Lorenz system controlled by a signal with phase as a parameter,L2,1 (P=3.82310−6, P-8).
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ci8 = H ci + Dsg,ui − cid if g=0

ci + Dsg,ci − l id if g = 1,
s7d

whereg is a randomly generated two-valued(0 or 1) index
used to determine which one of the two expressions is em-
ployed for the evaluation ofci8. The functionDsg,sd is de-
fined as

Dsg,sd = sf1 − r s1 − g/gmaxd
b*

g, s8d

in which r is a random number in the interval[0, 1], gmax is
the given maximum number of generations, and the user-
specified parameterb* determines the degree of dependence
on the number of iterations. The functionDsg,sd gives a
value in the rangef0,sg such that the probability of mutation
diminished asg→gm. This property renders this operator to
search the space uniformly asg is small initially but very
locally at later stages, and thus increases the probability of
generating a new number closer to its successor than a ran-
dom choice.

Step 6. Application of elitism strategy. New offspring are
generated and each member of the offspring is then evalu-
ated by the defined fitness function. To improve the conver-
gence rate, an elitism strategy, i.e., 50% of individuals with
high fitness values, is selected from the pool of the parents as
well as the offspring to update the resultant population and
then go back to step 2.

D. Numerical details

The simulation procedures are coded in C-language. The
fourth-order Runge-Kutta integration method is used to solve
the evolution equations with given initial conditions. In the
present simulation, the population sizeNp=200, the cross-
over ratepc=0.7, the constantb=0.95, and the mutation pa-
rameterspm=0.4 andb* =0.1 are adopted. Usually, time-step
sDtd of the order 10−1 or 10−2 are used for simulation of the
Rössler system and 10−2 for the Lorenz system[25–28]. In
the present study, smaller time-step sizes ofDt=5310−2 and
5310−3 are employed for the Rössler system and Lorenz
system, respectively.

Lyapunov exponents are calculated by the algorithm pro-
posed by Wolfet al. [24]. With time-step in a wide range,
Dt=5310−3–10−1 and the time series length of 400 time
units st=100–500d, the value ofl1 span over the range of
0.1238–0.1275 for the Rössler system, and 2.1507–2.1644
for Lorenz system withDt=10−4–10−2. With Dt=5310−3

and the time series length of 100st=400–500d to 400 time
units st=100–500d, the calculatedl1 lies in the range
of 2.1634–2.1695. In the form ofsmeand± ssample
standard deviationd, the above data for the Rössler system
can be expressed as 0.12545±0.00153 and that for the Lo-
renz system as 2.16206±0.00730. The results demonstrate
that, at least in the ranges we considered, the calculatedl1 is
not very sensitive to the time-step size and the length of the
time series.

In the present study, the searching interval for frequency
v is selected around a resonant frequency, the interval
f−2p ,2pg is for searching phasew, and the interval[0, 0.01]
is usually assigned for optimization of the amplitudesai and

bi. While an extended interval can be employed as a signal of
higher power is desired.

III. RESULTS AND DISCUSSION

In this section, we show a series of numerical simulations
to demonstrate the effectiveness and robustness of the pro-
posed method under various conditions. Two noted nonlinear
systems with a perturbation signalustd involved are em-
ployed as the test models. The first one is the Rössler system:

ẋ1 = − x2 − x3 + ustd,

ẋ2 = x1 + ax2, s9d

FIG. 5. Variations of maximum and averaged fitness values dur-
ing the evolution of the population for optimization of control sig-
nals.(a) Rössler system with optimized signalsR2,0 and(b) Lorenz
system with optimized signalL3,0.
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ẋ3 = x1x3 − cx3 + b,

in which a, b, andc are system parameters, and the pertur-
bation ustd acts as an external control force applied on the
first component of the vectorx=sx1,x2,x3d. The second
model is the Lorenz system:

ẋ = Prsy − xd,

ẏ = − xz+ Rf1 + ustdgx − y, s10d

ż= xy− bz.

where the three system parameters are Pr standing for
Prandtl number,R for normalized Rayleigh number, andb
for geometry of the system. Different from the Rössler sys-
tem, the Lorenz system is used to study the effects of the
perturbation in a system parameter, i.e.,R in this model. The
present GA-based method with control signals of one mode
sN=1d up to five modessN=5d is studied and the results
without phase shiftsw=0d are compared with the results of
the non-GA-based control performed by Mettin and Kurz
[13].

To designate various control signals with different modes
and conditions, the notationsRN,M andLN,M are, respectively,
used for the Rössler and Lorenz systems, in which the sub-
scriptN is the number of mode. The subscriptM is an index
for designation of various signals with the same modeN, and

the special one ofM =0 denotes the signals with zero phase
shift w=0, which was considered in the previous studies,
e.g.,[10,13].

A. Fundamental features of the control strategy

To verify the effectiveness of the present GA-based
method, results are compared with that by the previous chaos
control methods, e.g., Ref.[13]. First, the weak periodic per-
turbation control of the Rössler system is performed. The
system parameters are set to bea=b=0.2 andc=4.6, which
correspond to a chaotic attractor. The power spectrum of the
uncontrolled Rössler system is shown in Fig. 2(a). It is ob-
served that the strongest energy-contained mode is that of the
frequencyv=1.099. To compare with the results of Mettin
and Kurz, at first, the same conditions ofw=0 andb1=0 of
the control signal and the searching range of frequency in-
terval vP f0.520,0.562g are considered for comparison.
Then the optimization of control signal with perturbation fre-
quency in the intervalvP f1.0,1.1g is also performed.

Simulations are performed with initial conditionxs0d
=s5.0,5.0,5.0d and time stepDt=5310−2. The control sig-
nal is applied to the system at the time instantt=50. The
control target is set to be a state with the largest Lyapunov

exponentl̃=0. The optimum Fourier coefficients(ampli-
tudes), frequencies, and powers for the control signals under
consideration are shown in Table I. It is revealed that the
necessary powers of control signal obtained by the present
method are significantly lower, e.g., the controlling power

FIG. 6. Variations of the larg-
est Lyapunov exponent vs the per-
turbation frequency and ampli-
tude, (a) Rössler system witha1

=0.1, (b) Rössler system withv
=1.0789,(c) Lorenz system with
a1=0.05, and(d) Lorenz system
with v=2.86.
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found by the GA-based method with the signalR2,0 sv
P f1.0,1.1gd is even smaller than 1% of the power of signal
R5,0 proposed in[13]. Control effectiveness can be demon-
strated from the periodic state of period-9(or simply denoted
by P-9) in Fig. 2(b), which is turned from the chaotic state of
Fig. 2(a) after the optimized signalR2,0 is applied.

It is also shown that the two-mode signalsN=2d has re-
markably lower power as compared with the single-mode.
However, further increase of the number of the modes has no
significant advantage in reduction of the power. For the
present high effective GA-based method of global search
ability, the degrees of freedom forN=2 or 3 are sufficient.
Adding more modes could result in a minor change, e.g.,
10−5 or less, in power. Therefore, even forN=5, the power of
the optimum signal cannot be further reduced but remains as
the same order. However, searching for a signal of mode
number N=2 or 3 needs considerably less computational
time in GA optimization, e.g., time for reaching at optimiza-
tion of a signalR2,0 sN=2d is only 6.9% of the time needed
for R5,0 sN=5d for the Rössler system.

In the present GA optimization, searching procedures are
initiated with randomly selected individuals as the first gen-
eration. It is found that the optimized signals generated by

using different sets of random populations have the powers
of the same order. Nevertheless, employing an optimized
n-mode signal as a basic form with an additional mode added
to build thesn+1d-mode signal, the time taken for optimiza-
tion of this sn+1d-mode signal can be dramatically short-
ened. For example, to reach optimization of a 4-mode signal
with an optimized 3-mode signal as a base takes only about
10% of the time for the searching with randomly selected
individuals. However, it has no noticeable advantage in re-
duction of the signal power needed for control. As an opti-
mized signal is applied to control a chaotic system, using
different initial states of the system influences the length of
the transient stage, but it cannot change the period number of
the final state.

As to the chaotic behavior of the Lorenz system, a typical
case at Pr=10,b=0.4, andR=80 is shown in Fig. 3(a). From
the power spectrum of the uncontrolled state, a high energy-
contained mode at the frequency appearing aroundv0
=2.84, the simulation was carried out with the frequency
searching interval, vP f2.7,3.1g, the time period t
P f0,500g, time stepDt=5310−3, and the initial condition
sx0,y0,z0d=s0.1,0.1,0.1d. The optimized signals of various
modes determined by the present approach are shown in

TABLE I. Comparison of amplitudes, frequencies, and powers of the optimized periodic signals for chaos control of the Rössler system
by the present and Mettin-Kurz[13] methods.(NA denotes not available.)

Signal

Present Mettin-Kurz

vP f1.0,1.1g vP f0.520,0.562g vP f0.520,0.562g

Amplitudes
and frequency

Power
(period-k)

Amplitudes
and frequency

Power
(period-k)

Power
(period-k)

R1,0 a1=0.006 404 60
v=1.078 861 72

P=2.05310−5

(P-9)
a1=0.148 293 15
v=0.538 191 37

P=1.10310−2

(P-8)
P=2.23310−2

(NA)

R2,0 a1=0.006 235 30
a2=0.001 012 61

P=2.00310−5

(P-9)
a1=0.000 000 17
a2=0.006 378 30

P=2.03310−5

(P-9)
P=9.95310−3

(NA)

b2=0.000 007 84 b2=0.000 057 46

v=1.078 821 98 v=0.539 315 31

R3,0 a1=0.006 285 42
a2=0.001 023 36

P=2.03310−5

(P-9)
a1=0.000 009 61
a2=0.006 412 48

P=2.06310−5

(P-9)
P=5.42310−3

(NA)

b2=0.000 005 95 b2=0.000 016 51

a3=0.000 061 31 a3=0.000 059 14

b3=0.000 100 27 b3=0.000 121 73

v=1.078 828 09 v=0.539 438 71

R5,0 a1=0.006 518 76
a2=0.001 386 62

P=2.26310−5

(P-9)
a1=0.000 015 64
a2=0.006 375 42

P=2.07310−5

(P-9)
P=2.04310−3

(P-3)

b2=0.000 831 98 b2=0.000 004 67

a3=0.000 000 64 a3=0.000 001 74

b3=0.000 002 92 b3=0.000 002 01

a4=0.000 105 94 a4=0.000 835 67

b4=0.000 048 45 b4=0.000 001 45

a5=0.000 035 74 a5=0.000 009 34

b5=0.000 012 22 b5=0.000 002 06

v=1.078 392 52 v=0.539 284 93
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Table II. The comparison shows that the power of the signals
L1,0 andL3,0 found by the present GA-based optimization are
only 10.4% and 0.64%, respectively, of the Lui-Leite’s result
[10]. Besides, it also shows that increasing the number of
Fourier modes does not necessarily reduce the control power.
Figure 3(b) reveals that a periodic state of P-8 can be
achieved by the present chaos control with the optimized
three-mode signal,L3,0. With a larger searching range of the
amplitudes, we found a one-mode signalL1,08 (in Table II) of
a higher powerP=7.8310−5, which can lead the chaotic
system to an orbit of P-1. The power ofL1,08 is only 25% of
that found by Lui and Leite[10].

Figures 4(a) and 4(b), respectively, show the chaos con-
trol results of the Rössler system with optimized 2-mode
signals without and with phase modulation applied att=50.
It reveals that the signalR2,1 with w as one of the signal
parameters considerably reduces the transient time period
from 138 to 61 time units. The results in Figs. 4(c) and 4(d)
are those of the Lorenz system controlled by optimized
2-mode signals without and with phase modulation, respec-
tively. Similarly, the transient time has been minimized from

209 to 8.6. It is revealed that, for autonomous systems, the
consideration of phase modulation has little benefit to the
reduction in signal power but may considerably shorten the
transient time during the control.

Figure 5 shows the maximum and averaged fitness values
during the evolution of the population for the optimization of
the signalsR2,0 andL3,0. Although fluctuations appear, both
the maximum and average values of the fitness function
present an ascending trend during evolution. It demonstrates
that the present method effectively leads the evolution pro-
cedure towards the solution of a high fitness.

TABLE II. Comparison of the optimized periodic signals for
chaos control of the Lorenz system determined by the present
method and Lui-Leite’s method[10]. (NA denotes not available.)

Present Lui-Leite

Signal
Amplitudes

and frequency
Power

(period-k)
Power

(period-k)

L1,0 a1=0.008 064 77 P=3.252310−5

(P-3)
P=3.125310−4

(P-1)v=2.865 443 64

L1,08 a1=0.012 486 36 P=7.8310−5

(P-1)v=2.869 580 86

L2,0 a1=0.000 034 29 P=3.849310−6

(P-4)
NA

a2=0.000 575 57

b2=0.002 713 77

v=2.859 728 37

L3,0 a1=0.000 075 78 P=2.014310−6

(P-8)
NA

a2=0.001 562 58

b2=0.000 991 16

a3=0.000 770 39

b3=0.000 074 24

v=2.854 976 44

L5,0 a1=0.000 576 48 P=4.787310−6

(P-8)
NA

a2=0.000 052 68

b2=0.002 922 41

a3=0.000 343 98

b3=0.000 404 44

a4=0.000 084 53

b4=0.000 482 34

a5=0.000 000 23

b5=0.000 420 19

v=2.841 934 96 FIG. 7. (a) Switching control of the Rössler system. Control is
activated in the time periodt=1000 to t=5000 and switched
betweenR2,1 (P=2.0310−5, P-9) and R2,2 (P=6.41310−4, P-5)
every 1000 time units. The phase shifts at various stages
are t=1000: w=0.680 205 08;t=2000: w=2.100 468 85;t=3000:
w=−5.890 236 16;t=4000:w=−3.088 813 90; the Poincaré section
is x2=0; (b) Switching control of the Lorenz system. The signal is
switched betweenL2,1 (P=3.82310−6, P-8) and L2,4 (P=2.63
310−5, P-1). The phase shifts at various stages
are t=1000:w=−6.249 884 43;t=2000:w=3.274 711 35;t=3000:
w=5.807 548 18;t=4000;w=4.212 247 43. The Poincaré section is
y=−5.
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To examine the effects of the perturbation frequency and
amplitudes on the stability characteristics of the controlled
system, Fig. 6(a) presents the variation of the largest
Lyapunov exponent,l1, with the change in the perturbation
frequency,v, at the fixed amplitudea1=0.1; while variations
of the largest Lyapunov exponent with the perturbation am-
plitudea1 at the fixed frequencyv=1.0789 are shown in Fig.
6(b). The similar characteristics of the Lorenz system are
shown in Fig. 6(c) for the variation ofl1 with the perturba-
tion at a1=0.05 and Fig. 6(d) for that at the fixed frequency,
v=2.86. It is observed that several very narrow periodic
windows emerge between the chaotic regions. The deeper
valleys appear as the frequency of the control signal ap-
proaching the resonant frequency. Several periodic windows
emerge at smaller amplitudes. It confirms that weak resonant
perturbation signals can be employed to suppress chaos. The
amplitude or power and resonant frequency are significant
parameters for suppressing chaos.

To bring the system to a state of specified period number
(period-k), we need a parameter acting as a quantitative in-
dex to characterize the value ofk. Unfortunately, to the best
of our knowledge, there is still no such kind of target index
in the existing chaos control methods. The initial condition
has no obvious influence on the power of the optimized sig-

nal, it cannot alter the period number of the orbit. Neverthe-
less, the period numberk of the controlled orbit depends on

the power of the control signal. For example, withl̃=
−0.01, frequency searching rangevP f2.7,3.1g, and the am-
plitude searching ranges of[0, 0.01] and [0, 0.1], respec-
tively, we can find a two-mode signal ofP=3.83310−6 for
period-8 and a stronger one ofP=6.08310−4 for period-1.

B. Switching control between different states

Figure 7(a) is a typical example of switching control on
the Rössler system. The switching signals include the previ-
ous signalR2,1 (P-9) and another two-mode signal of higher
power,R2,2 (P-5). The amplitudes, frequencies, phases, and
powers of these signals are presented in Table III. The sys-
tem is initially chaotic until the signalR2,1 applied at the time
instantt=1000. The system behavior is a periodic state(P-9).
At t=2000, the control signal is replaced byR2,2 and a new
periodic state of P-5 appears. One more cycle of switching
between P-5 and P-9 is subsequently carried out every 1000
time units. Finally, att=5000, the control signal is totally
removed and the system returns to the chaotic state. This
switching process of the sequence: CAschaotic attractord
→P-9→P-5→P-9→P-5→CA is shown in Fig. 7(a) with

TABLE III. The amplitudes, frequencies, phases, and powers of various two-mode periodic signals for chaos control of the Rössler and
Lorenz systems.

Signal
Amplitudes,

frequency, and phase
Power

(period-k) Signal
Amplitudes,

frequency, and phase
Power

(period-k)

R2,1 a1=0.004 805 86 P=2.0310−5

(P-9)
L2,1 a1=0.000 900 56 P=3.82310−6

(P-8)b1=0.003 932 12 b1=0.000 680 13

a2=0.001 094 59 a2=0.002 121 33

b2=0.000 515 84 b2=0.001 363 36

v=1.078 652 82 v=2.855 124 93

w=−5.234 870 41 w=6.025 226 12

R2,2 a1=0.024 739 64 P=6.41310−4

(P-5)
L2,2 a1=0.000 043 65 P=6.20310−6

(P-2)b1=0.025 871 47 b1=0.000 304 84

a2=0.000 368 35 a2=0.003 120 92

b2=0.000 365 72 b2=0.001 598 80

v=1.078 039 18 v=2.873 925 99

w=1.688 084 58 w=4.336 693 31

R2,3 a1=0.034 076 75 P=6.60310−4

(P-5)
L2,3 a1=0.003 695 43 P=1.71310−5

(P-1)b1=0.012 536 76 b1=0.000 503 93

a2=0.000 497 81 a2=0.004 496 72

b2=0.000 593 01 b2=0.000 271 69

v=1.078 179 37 v=2.847 096 83

w=−3.478 568 18 w=−1.890 718 84

R2,4 a1=0.171 806 30 P=2.08310−2

(P-3)
L2,4 a1=0.000 184 50 P=2.63310−5

(P-1)b1=0.110 167 62 b1=0.003 561 62

a2=0.001 065 55 a2=0.006 306 10

b2=0.005 500 15 b2=0.000 116 58

v=1.067 792 45 v=2.841 725 61

w=−4.838 595 65 w=3.274 711 35
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the state variablex1 on the Poincaré sectionx2=0 plotted vs
time. Figure 7(b) shows the switching control of the Lorenz
system by alternately applying control signalsL2,1(P-8) and
L2,4(P-1). The sequence of this process is: CA→P-8→P-1
→P-8→P-1→CA. The histogram ofx on the Poincaré sec-
tion y=−5 is presented. The transient stage in each switching
process is evidently quite short, which is evidence of the
control effectiveness of the present chaos control method.

C. Control of noise-perturbed systems

For practical applications of chaos control, the robustness
of the method in the presence of noise is significant. The

noise can be the external disturbances to the system or the
uncertainties due to inexactness in modeling of the system.
The Gaussian white noise with zero mean is added to all the
state variables of the systems from the initial time instantt
=0. The noise level is measured by the standard deviations
of the Gaussian distribution.

To understand the influence of the noise on the controlla-
bility, the variation of the largest Lyapunov exponent with
the change in the noise levels is examined. Accurate thresh-
old of the noise level can be determined by measuring the
largest Lyapunov exponent. For the control signalsR2,1 (P-9)
andR2,2 (P-5), plots of l1 vs s are shown in Figs. 8(a) and
8(b). Each curve presented here represents the average value

FIG. 8. Influence of Gaussian noise level on the controlled
Rössler and Lorenz systems: the largest Lyapunov exponentl1 vs
the noise levels with applications of control signals,(a) threshold
noise levelsth=2.7310−7 for R2,1 (P-9), (b) threshold noise level
sth=8.2310−4 for R2,2 (P-5), (c) threshold noise level threshold
sth=1.5310−2 for L2,1 (P-8), and (d) threshold noise levelsth

=7.6310−1 for L2,4 (P-1).

FIG. 9. (a) Switching control of noise-perturbed Rössler system
ss=5310−4d in the time periodt=1000 to 5000 with alternatively
application of the signalsR2,2 (P=6.41310−4, P-5) and R2,4

(P=2.08310−2, P-3) every 1000 time units. The phase shifts
at various stages aret=1000:w=2.021 299 01;t=2000: w=
−1.960 980 48; t=3000: w=5.179 225 27; t=4000: w=
−3.793784 08 and(b) Switching control of noise-perturbed Lorenz
systemss=10−4d. The signal is switched betweenL2,2 (P=6.20
310−6, P-2) andL2,3 (P=1.71310−5, P-1) every 1000 time units.
The phase shifts at various stages aret=1000:w=4.336 693 31;t
=2000: w=−1.890 718 84;t=3000:w=4.336 693 31;t=4000: w
=1.642 425 00.
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obtained from ten independent runs with the random number
generator reset. One can observe that the stability of the con-
trolled system is destroyed as the noise levels raised up to a
threshold valuesth<2.7310−7 for the signalR2,1 and sth
<8.2310−4 for R2,2. The results show that the lower the
control power is, the less robust the signal. This point was
also mentioned in a previous work, Ref.[13]. Similar to the
above study for the Rössler system, the stability of the con-
trolled Lorenz system with the influence of noise is shown in
Figs. 8(c) and 8(d). The threshold noise level issth
<1.5310−2 for L2,1 andsth<7.6310−1 for L2,4.

The effectiveness of the switching control in the presence
of background noise is studied by repeating the cases in Fig.
7. The noise level is set ass=5310−4 for the Rössler system
ands=10−4 for the Lorenz system. In Fig. 9(a), the switch-
ing signalsR2,2(P-5) and R2,4 (P-3) are employed for the
switching sequence of CA→P-5→P-3→P-5→P-3→CA.
For the Lorenz system, Fig. 9(b) shows the sequence of
CA→P-2→P-1→P-2→P-1→CA by alternatively apply-
ing the control signalsL2,2 (P-2) and L2,3 (P-1). Both cases
demonstrate the effectiveness of the present method in noise-
disturbed systems. However, comparing with the noise-free
counterparts, a little stronger control signals have to be used.

D. Control of noise-disturbed systems with abrupt change in
parameters

As an illustrative example, a noise-disturbed Rössler sys-
tem of chaotic state ata=b=0.2 andc=4.6 in the presence of

a noise levels=5310−4 is considered. The control input of
a two-mode signal is adopted and the perturbation frequency
is searched for in the range ofvP f1.0,1.3g. Figure 10(a)
shows that the chaotic behavior of the uncontrolled system is
tamed after the control signalR2,3 applied att=1000 and the
system is led to a periodic motion of period-5. As the param-
eterc is abruptly changed to the value ofc=5.7 att=2000,
the system behaves chaotically again if the control signal is
kept the same. However, by applying a new signal(P
=9.21310−4, P-6) after t=2000, the system can be continu-
ously stabilized and brought to a new state of P-6, Fig. 10(b).

IV. CONCLUDING REMARKS

In the present work, we have developed a novel nonfeed-
back chaos control method with GA-optimized weak peri-
odic perturbation signals. On the two noted nonlinear sys-
tems, the Rössler system(external forcing control) and
Lorenz system(parametric control), it has been demonstrated
that the present method can work effectively and robustly on
the systems with and without the presence of a background
noise. Besides the above-mentioned merits, the following
conclusions can be drawn based on the present results and
analysis.

(1) Compared with previous methods, in general, the
present approach can achieve the control goal with signifi-
cantly lower power, ranging from one to three orders of mag-
nitude in difference. The power of each control signal found
by this approach does not necessarily decrease with the in-
crease of additional Fourier modes. It has been demonstrated
that the present method performs very effectively by using
the signal of low modes, i.e., two or three in the cases stud-
ied. This fact is especially significant in practical applica-
tions, in which the cost of computation is one of the major
concerns.

(2) The period numberk of the controlled orbit at the final
state depends on the power of the control signal. The initial
condition does not obviously change the power of the opti-
mized signal and, in turn, no influence on the period number
of the orbit. However, using an optimizedn-mode signal to
construct individuals of sn+1d-mode can dramatically
shorten the time required for optimization. For the autono-
mous systems, the phase of the control signal considerably
shortens the transient time period before reaching the control
target but has little influence on the power of the optimized
signal and the period number.

(3) Several topics are worthy of future investigations. For
example, besides the periodic control signals of Fourier
form, other possibilities, such as step functions, impulse
functions, etc., can also be considered. Developing a method
to specify the period number of the target state is also an
attractive issue. In addition, hybrid algorithms, which use a
combination of genetic algorithms and other gradient search
techniques to enhance the efficiency of the search, and alter-
native fitness functions are both interesting and worthwhile
for further study.

FIG. 10. Control targets of the noise-perturbed Rössler system
ss=5310−4d with abrupt change in the parameterc at t=2000.(a)
Chaos control by applyingR2,3 at t=1000, parameterc abruptly
changes from 4.6 to 5.7 att=2000 but the control signal is un-
changed, and(b) the control signal also alters(P=9.21310−4, P-6)
at t=2000 for taming the new chaotic behavior.
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